

HCL-003-001541

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

S-501: Statistics

(Computational Techniques & Stat. Tool box with Matlab)
(New Course)

Faculty Code: 003 Subject Code: 001541

Fime : $2\frac{1}{2}$ Hours]	[Total Marks : 70
-	

- Instructions: (1) Q. No. 1 carries 20 marks,
 - (2) Q.No. 2 and 3 each carries 25 marks.
 - (3) Students can use their own scientific calculator.
- Filling the blanks and short questions : (Each 1 mark)
 The independent variate values in the interpolation are termed as
 - (2) In Newton's backward formula, the origin is the _____ value of the argument in the series.
 - (3) Define Central difference operator.
 - (4) Usual notations prove that $E\Delta = \nabla E$.
 - (5) Interpolation and extrapolation approaches are
 - (6) Newton's formula for advancing differences utilizes _____ finite difference of each column of the difference table.
 - (7) The relation between u of Striling formula and v of Bessel's formula is _____
 - (8) Usual notations prove that $(1 + \Delta)(1 \nabla) = 1$.
 - (9) Usual notations prove that $\frac{\nabla^{m+n}}{E^n} = \Delta^m \nabla^n$

- (10) If $x = \begin{bmatrix} 3 & 7 & 5 \\ 0 & 4 & 2 \end{bmatrix}$ then using MATLAB function sort (x, 2) write its correct output.
- (11) If $x = \begin{bmatrix} 3 & 4 & 5 \\ 11 & 34 & 43 \end{bmatrix}$ then using MATLAB function median (x,1) write its correct output?
- (12) If $x = [0 \ 1 \ 2; 3 \ 4 \ 5]$ then using MATLAB function cumsum (x,2) write its correct output?
- (13) The origin x_0 in difference table in the Newton's-Gauss backward formula is the _____ value of x to the given value of x.
- (14) For interpolation or extrapolation, the two variables should have _____ relationship.
- (15) If $x = [1\ 2\ 3; 4\ 5\ 6]$ then using MATLAB function mean (x,2) write its correct output?
- (16) Define Mean or Average operator.
- (17) In Weddle's rule is applicable when the number of intervals *n* must be a _____
- (18) If the interpolating values lies near the beginning or the end of the central interval, _____ formula yields better results.
- (19) In diagonal difference table, the _____ argument of the series is taken as origin.
- (20) Explain Relation Operators in MATLAB.
- 2 (A) Write the answer any THREE: (Each 2 mark)
 - (1) Explain MATLAB function poisspdf.
 - (2) Evaluate $\frac{1}{18}$ by using Newton's formula, correct upto seven decimal.
 - (3) Prove that $f(x) = \frac{\Delta^n f(x)}{h^n n!}$
 - (4) Obtain Newton's formula for obtaining inverse square root.
 - (5) With usual notations prove that $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$
 - (6) Evaluate $\sqrt{50}$ using Newton's formula correct upto seven decimals.

6

(B) Write the answers of any three: (Each 3 marks)

9

- (1) Explain Talyor's series method.
- (2) With usual notations prove that $\sqrt{1 + \mu^2 \delta^2} = 1 + \frac{\delta^2}{2}$
- (3) Obtain Simpson's $\frac{1}{3}$ rule for numerical integration.
- (4) Apply Euler's Maclaurin sum formula to find the sum $1^3 + 2^3 + 3^3 + ... + n^3$
- (5) Obtain Lagrange's Interpolation formula.
- (6) Obtain Trapezoidal rule for numerical integration.
- (C) Write the answers of any two: (Each 5 marks) 10
 - (1) Explain For-Loop and While-Loop structure of MATLAB with example.
 - (2) Use Talyor's series method to compute y(0.1) and y(0.3) correct to five decimal places, if y(x) satisfies $\frac{dy}{dx} = xy 2x$ with y(0) = 3.
 - (3) Obtain Gauss backward interpolation formula.
 - (4) Obtain Stirling formula for central difference interpolation.
 - (5) Use Taylor's series method to solve $\frac{dy}{dx} = xy + y^2$ with y(0) = 1 at x = 0.1, 0.2, 0.3
- 3 (A) Write the answers any three: (Each 2 marks)
 - (1) With usual notation prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$
 - (2) Find by the interaction method, the root near 3.8 of the equation $2x \log_{10} x = 7$ correct upto four decimals.
 - (3) Explain MATLAB function binopdf.
 - (4) If $y = x^3$ then find f(1,3,5,7) and prepare the divided difference table. If $y = x^3$ then find f(1,3,5,7) and prepare the divided difference table.

6

- (5) Evaluate $\sqrt{37}$ using Newton's formula correct upto seven decimals.
- (6) If $y = \frac{1}{x}$ then find f(a, b, c, d) and prepare the divided difference table.
- (B) Write the answers any **three**: (Each 3 marks)
 - (1) With usual notation prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$
 - (2) Obtain Simpson's $\frac{3}{8}$ rule for numerical integration.
 - (3) Apply Euler's Maclurin sum formula to find the sum $\frac{1}{11^3} + \frac{1}{12^3} + ... + \frac{1}{50^3}$ correct to 5 significant figures.
 - (4) Explain False position method.
 - (5) Explain MATLAB function sum and cumsum.
 - (6) Explain Newton Raphson method.
- (C) Write the answers of any two: (Each 5 marks) 10
 - (1) Obtain Bessel's formula for central difference interpolation.
 - (2) Given the differential equation $\frac{dy}{dx} = x y$, with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.2 correct to five decimal places.
 - (3) Explain If-Else-End structure of MATLAB with example.
 - (4) Explain number display format of MATLAB.
 - (5) Obtain Gauss forward interpolation formula.